台湾大学林轩田机器学习基石课程学习笔记5 -- Training versus Testing

这里写图片描述

我的CSDN博客地址:红色石头的专栏
我的知乎主页:红色石头
我的微博:RedstoneWill的微博
我的GitHub:RedstoneWill的GitHub
我的微信公众号:红色石头的机器学习之路(ID:redstonewill)
欢迎大家关注我!共同学习,共同进步!

上节课,我们主要介绍了机器学习的可行性。首先,由NFL定理可知,机器学习貌似是不可行的。但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的。本节课将讨论机器学习的核心问题,严格证明为什么机器可以学习。从上节课最后的问题出发,即当hypothesis的个数是无限多的时候,机器学习的可行性是否仍然成立?

Recap and Preview

我们先来看一下基于统计学的机器学习流程图:

这里写图片描述

该流程图中,训练样本D和最终测试h的样本都是来自同一个数据分布,这是机器能够学习的前提。另外,训练样本D应该足够大,且hypothesis set的个数是有限的,这样根据霍夫丁不等式,才不会出现Bad Data,保证$E_{in}\approx E_{out}$,即有很好的泛化能力。同时,通过训练,得到使$E_{in}$最小的h,作为模型最终的矩g,g接近于目标函数。

这里,我们总结一下前四节课的主要内容:第一节课,我们介绍了机器学习的定义,目标是找出最好的矩g,使$g\approx f$,保证$E_{out}(g)\approx 0$;第二节课,我们介绍了如何让$E_{in}\approx 0$,可以使用PLA、pocket等演算法来实现;第三节课,我们介绍了机器学习的分类,我们的训练样本是批量数据(batch),处理监督式(supervised)二元分类(binary classification)问题;第四节课,我们介绍了机器学习的可行性,通过统计学知识,把$E_{in}(g)$与$E_{out}(g)$联系起来,证明了在一些条件假设下,$E_{in}(g)\approx E_{out}(g)$成立。

这里写图片描述

这四节课总结下来,我们把机器学习的主要目标分成两个核心的问题:

  • $E_{in}(g)\approx E_{out}(g)$

  • $E_{in}(g)$足够小

上节课介绍的机器学习可行的一个条件是hypothesis set的个数M是有限的,那M跟上面这两个核心问题有什么联系呢?

我们先来看一下,当M很小的时候,由上节课介绍的霍夫丁不等式,得到$E_{in}(g)\approx E_{out}(g)$,即能保证第一个核心问题成立。但M很小时,演算法A可以选择的hypothesis有限,不一定能找到使$E_{in}(g)$足够小的hypothesis,即不能保证第二个核心问题成立。当M很大的时候,同样由霍夫丁不等式,$E_{in}(g)$与$E_{out}(g)$的差距可能比较大,第一个核心问题可能不成立。而M很大,使的演算法A的可以选择的hypothesis就很多,很有可能找到一个hypothesis,使$E_{in}(g)$足够小,第二个核心问题可能成立。

这里写图片描述

从上面的分析来看,M的选择直接影响机器学习两个核心问题是否满足,M不能太大也不能太小。那么如果M无限大的时候,是否机器就不可以学习了呢?例如PLA算法中直线是无数条的,但是PLA能够很好地进行机器学习,这又是为什么呢?如果我们能将无限大的M限定在一个有限的$m_H$内,问题似乎就解决了。

Effective Number of Line

我们先看一下上节课推导的霍夫丁不等式:

$$P[|E_{in}(g)-E_{out}(g)|>\epsilon]\leq 2\cdot M\cdot exp(-2\epsilon^2N)$$

其中,M表示hypothesis的个数。每个hypothesis下的BAD events $B_m$级联的形式满足下列不等式:

$$P[B_1\ or\ B_2\ or\ \cdots B_M]\leq P[B_1]+P[B_2]+\cdots+P[B_M]$$

当$M=\infty$时,上面不等式右边值将会很大,似乎说明BAD events很大,$E_{in}(g)$与$E_{out}(g)$也并不接近。但是BAD events $B_m$级联的形式实际上是扩大了上界,union bound过大。这种做法假设各个hypothesis之间没有交集,这是最坏的情况,可是实际上往往不是如此,很多情况下,都是有交集的,也就是说M实际上没那么大,如下图所示:

这里写图片描述

也就是说union bound被估计过高了(over-estimating)。所以,我们的目的是找出不同BAD events之间的重叠部分,也就是将无数个hypothesis分成有限个类别。

如何将无数个hypothesis分成有限类呢?我们先来看这样一个例子,假如平面上用直线将点分开,也就跟PLA一样。如果平面上只有一个点x1,那么直线的种类有两种:一种将x1划为+1,一种将x1划为-1:

这里写图片描述

如果平面上有两个点x1、x2,那么直线的种类共4种:x1、x2都为+1,x1、x2都为-1,x1为+1且x2为-1,x1为-1且x2为+1:

这里写图片描述

如果平面上有三个点x1、x2、x3,那么直线的种类共8种:

这里写图片描述

但是,在三个点的情况下,也会出现不能用一条直线划分的情况:

这里写图片描述

也就是说,对于平面上三个点,不能保证所有的8个类别都能被一条直线划分。那如果是四个点x1、x2、x3、x4,我们发现,平面上找不到一条直线能将四个点组成的16个类别完全分开,最多只能分开其中的14类,即直线最多只有14种:

这里写图片描述

经过分析,我们得到平面上线的种类是有限的,1个点最多有2种线,2个点最多有4种线,3个点最多有8种线,4个点最多有14($<2^4$)种线等等。我们发现,有效直线的数量总是满足$\leq 2^N$,其中,N是点的个数。所以,如果我们可以用effective(N)代替M,霍夫丁不等式可以写成:

$$P[|E_{in}(g)-E_{out}(g)|>\epsilon]\leq 2\cdot effective(N)\cdot exp(-2\epsilon^2N)$$

已知effective(N)<$2^N$,如果能够保证effective(N)<<$2^N$,即不等式右边接近于零,那么即使M无限大,直线的种类也很有限,机器学习也是可能的。

这里写图片描述

Effective Number of Hypotheses

接下来先介绍一个新名词:二分类(dichotomy)。dichotomy就是将空间中的点(例如二维平面)用一条直线分成正类(蓝色o)和负类(红色x)。令H是将平面上的点用直线分开的所有hypothesis h的集合,dichotomy H与hypotheses H的关系是:hypotheses H是平面上所有直线的集合,个数可能是无限个,而dichotomy H是平面上能将点完全用直线分开的直线种类,它的上界是$2^N$。接下来,我们要做的就是尝试用dichotomy代替M。

这里写图片描述

再介绍一个新的名词:成长函数(growth function),记为$m_H(H)$。成长函数的定义是:对于由N个点组成的不同集合中,某集合对应的dichotomy最大,那么这个dichotomy值就是$m_H(H)$,它的上界是$2^N$:

这里写图片描述

成长函数其实就是我们之前讲的effective lines的数量最大值。根据成长函数的定义,二维平面上,$m_H(H)$随N的变化关系是:

这里写图片描述

接下来,我们讨论如何计算成长函数。先看一个简单情况,一维的Positive Rays:

这里写图片描述

若有N个点,则整个区域可分为N+1段,很容易得到其成长函数$m_H(N)=N+1$。注意当N很大时,$(N+1)<<2^N$,这是我们希望看到的。

另一种情况是一维的Positive Intervals:

这里写图片描述

它的成长函数可以由下面推导得出:

这里写图片描述

这种情况下,$m_H(N)=\frac12N^2+\frac12N+1<<2^N$,在N很大的时候,仍然是满足的。

再来看这个例子,假设在二维空间里,如果hypothesis是凸多边形或类圆构成的封闭曲线,如下图所示,左边是convex的,右边不是convex的。那么,它的成长函数是多少呢?

这里写图片描述

当数据集D按照如下的凸分布时,我们很容易计算得到它的成长函数$m_H=2^N$。这种情况下,N个点所有可能的分类情况都能够被hypotheses set覆盖,我们把这种情形称为shattered。也就是说,如果能够找到一个数据分布集,hypotheses set对N个输入所有的分类情况都做得到,那么它的成长函数就是$2^N$。

这里写图片描述

Break Point

上一小节,我们介绍了四种不同的成长函数,分别是:

这里写图片描述

其中,positive rays和positive intervals的成长函数都是polynomial的,如果用$m_H$代替M的话,这两种情况是比较好的。而convex sets的成长函数是exponential的,即等于M,并不能保证机器学习的可行性。那么,对于2D perceptrons,它的成长函数究竟是polynomial的还是exponential的呢?

对于2D perceptrons,我们之前分析了3个点,可以做出8种所有的dichotomy,而4个点,就无法做出所有16个点的dichotomy了。所以,我们就把4称为2D perceptrons的break point(5、6、7等都是break point)。令有k个点,如果k大于等于break point时,它的成长函数一定小于2的k次方。

根据break point的定义,我们知道满足$m_H(k)\neq 2^k$的k的最小值就是break point。对于我们之前介绍的四种成长函数,他们的break point分别是:

这里写图片描述

通过观察,我们猜测成长函数可能与break point存在某种关系:对于convex sets,没有break point,它的成长函数是2的N次方;对于positive rays,break point k=2,它的成长函数是O(N);对于positive intervals,break point k=3,它的成长函数是$O(N^2)$。则根据这种推论,我们猜测2D perceptrons,它的成长函数$m_H(N)=O(N^{k-1})$ 。如果成立,那么就可以用$m_H$代替M,就满足了机器能够学习的条件。关于上述猜测的证明,我们下节课再详细介绍。

Summary

本节课,我们更深入地探讨了机器学习的可行性。我们把机器学习拆分为两个核心问题:$E_{in}(g)\approx E_{out}(g)$和$E_{in}(g)\approx 0$。对于第一个问题,我们探讨了M个hypothesis到底可以划分为多少种,也就是成长函数$m_H$。并引入了break point的概念,给出了break point的计算方法。下节课,我们将详细论证对于2D perceptrons,它的成长函数与break point是否存在多项式的关系,如果是这样,那么机器学习就是可行的。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。

红色石头 wechat
欢迎您扫一扫上面的微信公众号,了解更多AI资源!
坚持原创技术分享,您的支持将鼓励我继续创作!